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The Boolean difference expansion of Boolean algebra is generalized to finite
(Galois) fields. A systematic method is provided for calculating the coefficients
of this type of multivariable polynomial expansion. It is applied then to the
synthesis of switching functions. Applications include multivalued logics as well
as binary-valued logics.

l. Introduction

As the computer technology continues to flourish, logic design grows ever more complex. This, combined with the
rapid advance of the integrated circuit technology, indicates the need for alternative logic designs which are simple and
systematic in nature. Towards this end, this article generalizes to finite fields an expansion of Boolean algebra (Ref. 1).
This expansion over finite fields includes the transform recently provided by Menger in Ref. 2 for single variable func-
tions. This result was previously described in Ref. 3 for finite fields having 2 elements where n is any positive integer.

Since the circuit design methods introduced in this article utilize polynomial expansions of finite or Galois fields,
it is appropriate to call the physital realizations of this new expansien Galois switching functions. Such functions can
be implemented in the same manner as logic networks using AND and OR gates. Nonetheless, instead of using only
single gates, they often employ complex modules. To keep pace with the technology of large-scale integrated (LSI)
circuits, following Menger (Ref. 2), such modules will be referred to as Galois PLUS and Galois TIMES gates.!

The present approach of mapping mathematical descriptions onto hardware differs from the Fourier-like transform
technique discussed elsewhere (Ref. 4). The relationship of the mathematics to the circuit in the transform method is
often lost and difficult to appreciate. Though the new method, presented here, still involves considerable mathematics,

its complexity is compensated partly by the transparency of its mapping onto hardware.

1Rigorous treatments of these gates may be found in Refs. 3, 5, and 9.
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Since the mathematical background necessary for this presentation is ubiquitous (Refs. 6 and 12 ), it will not be
provided here. Several points of attraction for this type of logic design are presented. A few suggestions for future
research in this area are also made.

1. The Polynomial Expansions

The polynomial expansion for single-variable Galois switching functions will be given first; then the result is
extended to multivariable Galois switching functions. From this, a formal definition of Galois switching functions
is also described.

Theorem 1 below, though given by Menger (Ref. 2), is reexpressed without proof here in a form needed to develop
the multivariable expansion to be described in Theorem 2.

THEOREM 1: For any function F:GF(p") - GF(p), there exists a unique function f: {0,1,---,p" — 1} > GF(p") such
that

) = 5 fke M
where the function f is given by
f(0) = F(0)
flky= 3 [F(0)— Fy)ly*0<k<p" @)

YEGF!(p™)

so that F(x) has the following “power series” expansion:

R0 =FO+ '3 | 5 IO - Fo)l | )

The existence of Eq. (1) has long been known (Ref. 6). A more generalized version of it was first proven by Reed
and Solomon (Ref. 7). Edwards (Ref. 8) later proved Eq. (1) in its present form when dealing with synthesis of
switching networks. Menger provided Eq. (2) in his Theorem 2, a more generalized version of the Boolean difference
described by Reed (Ref. 1). From Eq. (2), one can compute the coefficients f(k) of Eq. (1).

With Theorem 1 and the recognition that Eq. (2) is a generalized Boolean difference, a method was found in Ref. 3
for deriving any multivariable polynomial expansion over Galois fields GF(2"). This method is now extended to the
general Galois field GF(p").

Let us first symbolize Eq. (2) differently by defining a generalized finite “difference” as follows:

flk)=aFO)= 5. [FO)—F@y)l™ (4)

YEGF!(p*)

where 0 < k < p*. Equation (4) is a sum of weighted differences [F(0) — F(y)] over the field GF’(p™). For GF(2), it
simply reduces to the usual Boolean difference (Ref. 1). This is the reason for calling the above sum a finite difference.
- Due to the linearity of Eq. (4) in the differences [F(0) - F(y)],

flki ko) = A® F(00) = A [Ak F(0,0):I

2
Ty

> [Ak F0,0) = 4 Fln0) 7
YEGF! (pn) z,?
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But

A FO,0= 3> [F0,0)~F0,y,)ly:"

Yo GF (pr)

and

A F(y,0)= > [F(y,0) — Fys, v2)ly:*

ku
Tt Y2€GF! (pr)

both also by Eq. (4). Hence, using the linear property of %,

flkiu k)= 3 I: q (;( i [F(0,0) — F(0,y2)ly;* — > [F(3,0) — F(Vx,*rz)]y:k*]‘/lk‘

Y1€GF’ (pr) Y26GF! (pr)

= > > [F(0,0) — F(0,v2) — F(y1,0) + F(ys, y2)lv;* v+

YVIEGF! (pn) Y2€GF! (pn)

follows from the property —u = —1-<u,ueGF(p™). For simplicity in notation, f(k,, k,) will be rewritten as:
f(ki, ko) = 3 [F(0,0) — F(0,v2) — F(y1,0) + Fly, v2)] vy
GF (™)

Proceeding in a similar fashion, the following higher order partial differences can be derived and are given below.

f(kly k., ka) A(ai F(0,0,0)

,"11- 2k

- 5L ym0n0] g4 rono]

= 353" [F(0,0,0) — F(0,0,ys) — F(0,y,0) — F(y,,0,0)

QR (pr)

+ F(0, y2,v5) + F(v1,0,v3) + F(y1,72,0) — F(y1, v2 vs) Iy, vy

fllsy - ki) = A‘:> FO,,0= | _,é(p ‘1) [é} F(o,...’()):l

- zﬁl[ﬁ[ [A F(O, - 0)]..]]

— F(yi,0,,0) + F(0,, i, , 7s,)+ ** + Flyiy, 71,0, -+, 0)

—_ e F(Yip .. ’71 ) —kxl .Y;psp

where the asterisk represents “—” if p is odd and “+” otherwise.

From the above expansions, an important theorem for multivariable Galois switching functions over the field GF(p®)
can now be inferred. For notational conveniences, let ¢ = p* — 1. Also represent the vector of m 0's by 0.

" THEOREM 2: For every function F;: GF(p™)* — GF(p"), there exists a unique function f: {0, 1, ---, p* — 1} - GF(p") such
that

F(x,, ", xm) = Z f(ki, ...,k7n)x’f1 oo b (5)
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where the function f is given by
fQ) = F(0)

f(kl, 0> o ,0) = Z [F 0) F(Yly 0’ )]Y_k‘

3"11 GF(pm)

flky, ks, --+,0) = A® F(0)

‘;Z[F F(O,yZ,O,"',O)—F(y],O,O,"',O)
’(p")
+ F('Yh 2,0, )]7 M v

fh k)= . A™_ F(Q)

ztL8
=3 SIF(Q) — F(©O,,0,ym) — - — F(y5,0, -, 0)
GF’' (p™)
TF0, 0, ym-1,ym) T ="+ Flys,v2,0,-,0) = - *Flys, -, ym) Iy -y (6)

and

A® F(0) = Al: AP0 F(Q )] forp=1,2,-

z oy, zq, T
where the asterisk represents “—” if m is odd and “+” otherwise. The function F(x,, -+, x,) has the following “power
series” expansion:

F(x1,~--,xm)=F((_))+|:A F(0 ] +|:AF(O:|

zm

+[a F(O)]x; +- [

Zy

F(O)]x?,, + [A, F(Q)]x’fn

m

+_A<2’F(O):|x1x2 ~+[ A‘”F(O)]xq x

12,y

PN o 27
1 Tm Zom

+— A(’")F(Q):Ixx"‘xvn+"‘+l: . Al F((_))]xg-'-xg‘ (7

Proof: We shall prove this theorem by an induction on m, the number of variables. The case m = 1 has already been
established in Theorem 1. Assume now that Eq. (7) is true for all integers k < m and consider the expansion of
E(xi, "+, %, Xm,1) With respect to its first m variables. By the induction hypothesis,

F(xla T x"b xﬂHl) = F((_)s xm+1)

+ [A F(_(_),x,,m)] %, + o+ [ A F((_),xmu):lx?n

TR [ a® F(Q, x,,m)] Xt + o+ [ A® F(Q, x,,,,ﬂ)] X8, xd

T +[ atm F((_),xml)Jxl---xm o +[ am F(Q,xml)]xfg...xgn (8)
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But

T ™ ziy

A®, F(0, %)

Tl 2lip
iy iy

For example,

q
AOF(Q, 1) = AOF(Q,0) + 3

or

Similarly,

2 F(Q, %) = 5 F(0,0) +

= A

A® - F(0, %,.,,) is a mapping of GF(p™) - GF(p") for p = 0,1, ---,m. Hence, Eq. (3) can be used to compute

F(0,0)

kg k;
Ti1eee zlip
iy »

[¢2] k
+ i [.’c enu l:z kg A.. . zk.' F(Q’ 0)}] xnmtl
Kmi1=1 m+t it in?

AP F(0,0) | xFnn 9)
z¥iy oo by 2%y e 2 g mi1
it p Kpme1=1 iy P S

A(“ F(Q,O) xknn—l
x .t pEman m+l
m+1= +

q
F(Q o) =FQ0)+ 3 [A_A F(o, o>]xe;;¢;1
Emeq=1 {

m+l
T il

q Y ’
)y [ AL °>j| Xy

and so on. Substituting Eq. (9) into Eq. (8) yields

q
F(ts, -+, T Tmas) = FQ,0) + 3 [
Eme1=1

A F(Q, 0>]xk»m

n+l
41
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+ ..
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k
F(0, 0>]x,,;a:1]xzblez.

q
N
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\_.’lf‘ s Im km+1:1 ‘”1 Y "'m"m"lfl

and the induction is complete. The uniqueness of f follows from the fact that the total number of possible functions
F is (p)@ " which is exactly the total number of possible functions f.

The existence of Eq. (5) has long been known (Refs. 2, 6, 9, 10) but not the expansion given in Eq. (6). The canonical
-expansion of Theorem 2 generalizes to Galois field GF(p") a result previously formed over GF(2") (Ref. 3).

Theorem 2, which includes Theorem 1, provides a general means of synthesizing Galois switching functions for
multiple-valued logics. For example, logic elements having three-level input and three-level output voltages (Ref. 11)
can be used to implement Galois switching functions in the field GF(3"). Though most studies of logic design in the
past have been for the binary-valued logic, the advent of Theorems 1 and 2 may change this.
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For continuity of presentation, illustrative examples, using Theorem 2, will be postponed to the next section. From
Theorem 2 one can now give a formal definition of Galois switching functions.

Definition 1: A Galois switching function F of m variables v,, -+, v,, over field GF(p”) is a rule that associates every
m-tuple of valued input variables (v,, - v,,) with an m’-tuple of valued output variables (zi, -, z.) over field GF(p):

F: GF(p")™—> GF(p")™

Mathematically, a Galois switching function describes the logic performance of a “combinational” switching circuit
with m input terminals v, -+, v, and m’ output terminals z,, -+, Zp.

If a parametrization of a function is the function obtained by replacing a subset of its variables with constants, then
we can further state a more general definition of Galois functions.

Definition 2: Let v = (v,, 01, -+, Umy) be a sequence of length m and_f = (fo, f1, "> f(;mm_,) be a sequence of length
(p*)". A universal Galois function for v is a Galois function U(y, f) such that each of the (p")®™ functions of v appears
exactly once among the various parametrizations of U obtained by replacing f by a sequence of Galois field constants.
(The active variables of U(v,f) are v, while its selection variables are f.) In other words, there exists a sequence
a = (@, 0y, ", A mm ) Of field elements for each function F: [GF(p")]!2/— GF(p"), such that

F(v) =U(v, o)
where |v]| is the length of v.

On the other hand, a general polynomial is defined as follows:

Definition 3: A general polynomial in m variables of length ¢ = (q,, ***, gm-.) is the sum of all terms
@iy iy O3 O

where 0 <i, < qo, " ,0 <ipy < Gyt

m—-1—-1 Qo1

B0 ... gyim—1
) iy V0 O
im—-1=0 19=0

For example, a general polynomial in two variables of length 2 = (22 22) is of the form:

3 3
DD iy, D0 = agg + 850, A Gos0? + os0?

i1=0 i9=0

t 8100 + @1,0601 + G120, + @4;30,0°
+ oot @a00) + 451050, F 450302 + a0}
Definition 4: A universal polynomial over field GF(p") in m variables, each of which has length p~, is a general poly-

(mtimes)

nomial of length (p*, --- , p").

From the above definitions and Theorem 2, Corollary 1 is immediate.

Corollary 1: If the polynomial expansion is implemented in hardware such that the p™ coefficients are left unspecified,
and in fact treated as the other m inputs, then such an implementation is “universal” in the sense that it can simulate
any given m-argument function. It is necessary only to supply the correct values to the coefficient inputs and these
values are obtainable from Eq. (6) of Theorem 2.
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I1l. Applications

We now give an example to show how Theorem 2 can be used to find Galois switching functions for multiple-valued
logic. The computational procedures will be shown explicitly. Then, Galois switching functions for realizing conventional
binary-valued logic are provided to illustrate the possible varieties of the logic design using Galois field theory.

Example 1: Consider the four-input two-output specification given in Table 2. Integers 0, 1, and 2 represent three
signal levels of certain three-valued logic elements. We would like to derive the Galois switching function over field
GF(83?) for this truth table,

The addition and multiplication tables for GF(3?) are described in Table 1 (a derivation for obtaining these tables
is discussed in Ref. 5). The truth values given in Table 2 can be realized as a two-variable input, one-variable output
function by the following partition:

X = {ty, o} % = {5, 4. }; F = {04, 05}
Representing the field elements as

0=00,1=0"=10,0! =01, a? =12,a® = 22,0* = 20,a° = 20,a® = 21, = 11

a truth table in terms of 0, 1, and o’ can be derived from Table 2.

The Galois switching function over field GF(3?%) representing the truth values of Table 2 is derivable from Theorem 2.
Utilizing the field operations of Table 1, some of the computations are given as follows:

f(0,0) = F(0,0)

f1,0)= %" [F(0,0) — F(ys,O)]y:*

GF’(3%)
= —qg°l—a? o — ot —at*a’ -t —atadt—arat—1a=aqa
f(0,3) = > [F(0,0) — F(0,v:)]y;®
aF7(3?)

=-1-1-1-1-1-1-1-1=1

f(1,1) = >3 [F(0,0) — F(0,2) — F(y1,0) + F(yz,v2)lyi'v:* =1

GF’(3%)

Computations of this sort reveal that f(5,7) = f(8,8) = 1, and the remaining 75 functions f are all zero. Hence,
the desired Galois switching function is of the form:

F(x,, x,) = ox; + x5 + 2%, + x5x] + x3x5 (10)
The fact that F(x,, x,) realizes the truth values of Table 2 can be verified by direct substitution.

The above shows how three-voltage-level logic elements might be used to implement the truth values given
in Table 2. If one had Galois PLUS and TIMES gates that were capable of performing the field operations given in
Table 1, Eq. (10) could be implemented with only a few gates of these types.

Since most of present day logic elements are binary-valued type, we now provide more carefully an application of
Theorem 2 in this regard.
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Example 2: Consider the output table of a six-input two-output binary variable function given in Table 3 (Ref. 3). For
economy of space, both the binary inputs and outputs of Table 3 are described by their decimal integer representa-
tions. The input of an output in row n = { can be determined by substituting i for n in the expression given in the
column of that output. For example, the input of the output 3 in row n = 5 and column n + 16 is 21. Thus, the binary
output of the input 21, u,u,u.uuu, = 010101, is F,F, = 11. Similarly, the binary output of the input 10, u .t u s,
= 001010, is F,F, = 10. These two outputs are encircled as shown in Table 3.

Employing either the Karnaugh map method or the Quine-McCluskey method, the minimal logical equations of
the above output table are found to be as follows:

Fo(ty, Uy, Us, U, Ug, Ug) = Uttty + Uatistly + Ty,0,0, + U, dllu,
+ Uilallsily + Uallollstl, + Ut + U U0l
Fo(ty, g, Uy, Uy, s, Us) = Uslylls + Uil + UyUsUsT,
+ Wi, + utti g + U
+ WUl + Uglatislls + Uyl U
where each + denotes an OR operation.

These two logical equations can be implemented with 22 AND gates and 2 OR gates,

Now, either by Theorem 2 or by direct expansion, the Reed-Muller expansions of F, and F, are of the forms:
Fl(ul; Uy, Ug, Uy, Us, ue) =1®u, uu, ®uu, G uu, O uuy G uu, O uu,
@D Usug O utt; O U O uuts O u U O u s
@ uusu; B u.t,u,
Fz(ul, Uz, U3, Uy, Us, uG) =1®u, ®uu, ®uu, ®uu; O uty S utis O Ul

D usus O usu, O u; O wuts O uuus G utu,

@D u.uu; O u.uu,

where each @ denotes an EXCLUSIVE-OR operation. Note that in GF(2), + is commonly written as @. Implemen-
tation of these expressions requires 20 AND gates and 2 sixteen-input EXCLUSIVE-OR gates.

Table 3 can be realized with far fewer basic gates over the field GF(22) in the following manner. Let the input and
output variables be partitioned as:

X, = {ub uz}; X2 = {us, u4}; X3 = {ua, us}
and

F = {Fl,Fz}
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Using the representation GF(22) = {0,1, a,a?} = {00,11,01,10} and Theorem 2, the Galois logic equation for the
function F is derived to be:

Fxy, %3,%5) = 1 4 2, 4+ 2,2, + 2,35 + x,%; + %,%,x,

Note that when p = 2, we have the identity: — = +.

Two realizations of F are given in Fig. 1. If these Galois gates are comparable in cost with Boolean gates, F can be
realized economically.

Examples showing more drastic savings of hardware may be found in Ref. 3.

It was shown in Ref. 3 that realizations of these types are also useful from the fault diagnostic point of view., One
weak point about such a method is that it may create large delay time; this may be an important factor in certain
systems. In spitc of this fact, Theorem 2 can be considered as a systematic method for deriving multilevel logic
networks, an alternative approach to the conventional methods—the Karnaugh map method and the Quinc-McCluskey
method.

IV. Points of Attraction

The following are a few points of attraction for using Galois field theory in logic design (Ref. 3).

(1) Galois theory offers a wider choice of basic logic gates, and conceptually it can be adapted to suit cach stage
of an architectural development (Ref. 10).

(2) In constructing an electronic encoder for the Bose-Chaudhuri-Hocquenghem code, Bartee and Schneider (Ref. 5)
found that the decoding procedure could be economically implemented by designing the arithmetic unit based
on Galois field operations.

(3) Similar requirements for Galois field arithmetic circuits have arisen in applications of linear recurring sequences
to space object tracking.

(4) Networks derived from the concept of Galois field theory are usually composed of multioutput gates that
are suitable for integrated circuit fabrication (Ref. 2).

(5) The realization of switching functions by modular algebra has been shown to be less complex than by Post
algebra (Ref. 10). When m is prime, the modulo m number system forms a finite field. For this case, its applica-
tion to multiple-valued logic is promising, Example 1 illustrates this fact.

(6) The circuit derived from-Galois field theory possesses many properties that are suitable for fault diagnosis.

(7) Conceivably, Galois logic may play an important role in telephone networks or networks of a similar nature.
Specifically, each multiwire cable or bundle may be considered as a Galois variable that can assume many valucs.

V. Conclusion

A previously given polynomial expansion technique for single-variable functions is recognized to contain a gen-
eralized Boolean difference from which a polynomial expansion for multivariable functions is derived. The expansion
is then applied to the synthesis of switching functions using multioutput blocks called PLUS and TIMES gates. This
application indicates that by employing an appropriate size of the domain and a suitable representation for the
elements in that domain, the synthesis of switching functions can be accomplished cconomically.
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The amount of tedious computation required in the above application also suggests the need for good computer
programs, Such programs will enable one to select an appropriate size and assignment suitable for each individual
synthesis. For a given truth table having m-variable inputs and n-variable outputs, m > n, one tends to select the
size of the field according to m. This would create “don’t care” conditions. Whether such a selection is beneficial
or not is also a subject of further research.
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Table 1. Field operations

Multiplication defined for field GF(32)

Addition defined for field GF(32)
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Table 2. An input-output truth table
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Table 3. Truth value table for a six-input two-output binary variable function

I“ﬁ“t n+0 n+8 n+16 n+ 24 n+32 n+ 40 n+48 n+ 56
URTRTRIRTETN FF,
0 3 3 2 1 1 0 0 2
1 3 0 0 1 2 2 1 3
2 3 ® 1 1 0 3 2 0
3 3 1 3 1 3 1 3 1
4 3 3 0 3 2 3 1 3
5 1 2 ® 2 2 2 0 2
8 0 1 1 1 2 1 3 1
7 2 0 2 0 2 0 2 0
Output
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Fig. 1. Two realizations of F
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